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Lab 9: Building a Computer

Introduction

A conceptual block diagram of a simple computer is shown in Figure 1. In the

previous labs, the Address Multiplexer (Addr Mux_Sel), Arithmetic Logic Unit (ALU),
Computer Control Unit (CCU) and required registers (8-and 1-bit) were already de-
signed. In this lab all the components will be put together to build a computer. One
of the missing blocks is the memory block, which can be found on the class webpage
(NMT EE 231). To program the computer the initialization code must be modified.
The last component remaining is a clock divider. The Spartan 7 has a built in clock,
but it runs at 12MHz. Since this is too fast, the computer needs a counter that will
divide the clock speed making the computer’s operation visible. In this lab students
will learn to use Vivado’s graphical design tools to implement the computer (Processor)
as shown in Figure 1.
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Figure 1: Processor Block Diagram
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1 Prelab

Week 1:
1.1. Read the Prelab, Lab, and Supplementary material.

The Spartan 7 has a built in 12 MHz clock. If we were to use this clock for the “running
lights” program, all of the LEDs would appear to be on at once because of the very high
clock speed. To avoid this the computer needs a clock divider. The divider will be similar
to a counter, in that it will count clock edges, but instead of just resetting or incrementing
an output, it will toggle a new “clock” signal.

1.1. How high would a counter need to go in order to slow the 12 MHz clock signal down
to 10 Hz?

1.2. How many bits does that number require?
1.3. Create a clock divider.

Week 2:

1.1. Using the instruction set provided in the Table 1, write a computer program to generate
the two “running light” sequences (two separate program routines, you do not have to
have both simultaneously, just one at a time).

One way to accomplish this is to start with an 8-bit number 1111 1110 (where the zero
represents the LED that would be off). Then left shift that number and increment the
sequence to back-fill with ones, then repeat; once you have reached the end, jump back
to the beginning of the program. There are many different solutions, differing in requiring
more processing/clock cycles, or memory usage. To save the desired output to the LEDs
(Output_port) save the value to the address 0x80. Figures 2 and 3 show the expected output
at different time steps for each of the two sequences to be generated.
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2 Lab

2.1. Using the graphical method as shown in Section 3, design and build the entire simple
computer.

In the CCU lab you, created Operational codes, or “Opcodes”.These codes are basic in-
structions that can be written into memory for the computer to later read as Operational
instructions. As outlined in the CCU lab, the computer will first fetch the Opcode instruc-
tion, and then execute either 1 or 2 execution cycles depending on that Opcode. By writing
values into memory, we can tell the computer to do what we want in this case running lights,
therefore “Programming” the computer. The programming technique of using Opcodes is a
primitive form of programming simple computers and microcontrollers called Assembly.

2.1. Enter your “running lights” program into the Memory Block.v file.
2.2. % Simulate the computer you have created in the prelab (Week 2).

2.3. % Run your code on your board.

3 Supplement: Graphical Design of Processor

3.1. Start a new project, and include all of the necessary modules (Addr Mux_Sel, ALU, CCU,
1-bit Registers, 8-bit Registers), and create a new .v file for Memory Block.v
and your Clock Divider.v

3.2. On the top bar, select Flow — Create Block Design — and name and create the
block design.

3.3. Now right click on the empty Block Diagram, then select add module...

3.4. Select the module that you desire to add, and it will be placed into the Block Diagram.
Continue adding all of the required modules.

3.5. Once all of the modules have been loaded, click and drag each of the inputs to their
outputs, completing the diagram. If desired, you can also drag around individual
module blocks for better placement.

3.6. To add an output of input, right click the Block Diagram, and select create port.
After selecting any options you may click and drag the port to the desired connection.

Hint: You may want to add additional output ports during simulation, to assist in debugging
and finding any trouble. (Alu_ctrl, Address, Data out, Acca...)

3.1. After finalizing the block diagram, in Sources, right click the Block design, and select
Generate Output Products. Then, in the same menu, select Create HDL
Wrapper. This will write an equivalent of a main.v module, that you can assign pins,
write a testbench (simulation) for, and ultimately upload to the Spartan 7.
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Table 1: Computer Instructions

| Op.Code | Instruction | Operation (Mnemonic)

|

| | nop | Do nothing. (No Operation) |

LDDA addr | Loads ACCA with the value in memory at address addr. C stays the
same, Z changes. (Load ACCA from memory)

LDDA_IMM Loads ACCA with num, the value in memory at the address imme-

#num diately following the LDAA #num command. C stays the same, Z
changes. (Load ACCA with an immediate)

STAA addr | Stores the value in ACCA at memory address addr. C stays the same,
Z changes. (Store ACCA in memory)

ADDA addr | Adds the value in memory location addr to the value in ACCA and
saves the result in ACCA. C and Z change. (Add ACCA and value in
memory)

SUBA addr | Subtracts the value in memory location addr from the value in ACCA
and saves the result in ACCA. C and Z change. (Subtract value in
memory from ACCA)

ANDA addr | Perform a logical AND of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical AND of ACCA and value in memory)

ORAA addr | Perform a logical OR of the value in memory location addr with the
value in ACCA. Save the result in ACCA. C stays the same, Z changes.
(Logical OR of ACCA and value in memory)

CMPA addr | Compare ACCA to value in addr. This is done by subtracting the
value in addr from ACCA. ACCA does not change. C and Z change.
(Compares ACCA to the value in addr)

COMA Replace the value in ACCA with its one’s complement. C is set to 1
and Z changes. (Compliment ACCA)

INCA Increment value in ACCA. C stays the same and Z changes. (INCA
ACCA)

LSLA Logical shift left of ACCA. C and Z change. (Logical shift left ACCA) ‘

LSRA Logical shift right of ACCA. C and Z change. (Logical shift right
ACCA)

ASRA Arithmetic shift right of ACCA. C and Z change. (Arithmetic shift
right ACCA)

JMP addr Jumps to the instruction stored in address addr. The PC is replaced
with addr. C and Z stay the same. (Jump)

JCS addr Jumps to the instruction stored in address addr if C' = 1. If C
is not set, continue with next instruction. C and Z stay the same.
(Jump if carry set)

JCC addr Jumps to the instruction stored in address addr if C' = 0. If C is
set, continue with next instruction. C and Z stay the same. (Jump
if carry not set)

JEQ addr Jumps to the instruction stored in address addr if Z = 1. If Z is not

set, continue with next instruction. C and Z stay the same. (Jump
if Z set)




	Prelab
	Lab
	Supplement: Graphical Design of Processor

